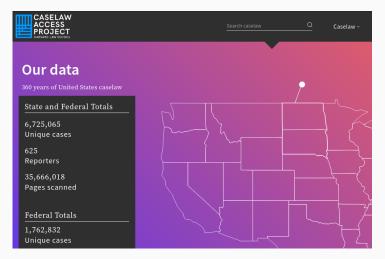
Mapping landmark cases in the U.S. legal system

<u>R. S. Pires</u>, E. A. Oliveira, C. G. O. Fernandes, J. A. Monteiro Neto and V. Furtado

Fortaleza, June 25, 2021

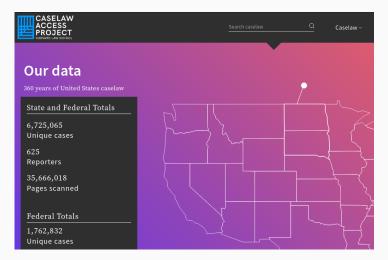
Mapping landmark cases in the U.S. legal system


• Common Law: Precedents are fundamental in the U.S. legal system.

- Common Law: Precedents are fundamental in the U.S. legal system.
- ► Landmark cases: Become relevant by setting legal concepts or interpretations and influence many other cases.

- Common Law: Precedents are fundamental in the U.S. legal system.
- ► Landmark cases: Become relevant by setting legal concepts or interpretations and influence many other cases.
- Defining the properties of a landmark case through quantitative approaches remain an open problem in law research areas.

- Common Law: Precedents are fundamental in the U.S. legal system.
- ► Landmark cases: Become relevant by setting legal concepts or interpretations and influence many other cases.
- Defining the properties of a landmark case through quantitative approaches remain an open problem in law research areas.
- Citation Networks: Vertices with many citations play an important role in the information dynamics of *citation networks*.


Dataset: Caselaw Access Project

https://case.law/download/

[3/12]

Dataset: Caselaw Access Project

https://case.law/download/

with 360 years of digitalized documents.

Mapping landmark cases in the U.S. legal system

[3/12]

Dataset: Cornell University (Landmarks)

https://www.law.cornell.edu/supct/cases/name.htm

▶ $N_v = 5,084,607$

- ► $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

- ▶ $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

Landmarks:

- ▶ $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

Landmarks:

►
$$N_{\text{land}} = 539$$

- ▶ $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

Landmarks:

 \triangleright N_{land} = 539

Degree-centralities measures:

- ▶ $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

Landmarks:

 \triangleright N_{land} = 539

Degree-centralities measures:

• $K_{in}(i) = \sum_{j=1}^{n} A_{j,i}$ (number of cases that cites a case "i")

- ▶ $N_v = 5,084,607$
- ▶ $N_e = 45, 532, 896$

Landmarks:

 \triangleright N_{land} = 539

Degree-centralities measures:

K_{in}(i) = ∑_jⁿ A_{j,i} (number of cases that cites a case "i")
 K_{out}(i) = ∑_jⁿ A_{i,j} (number of cases that a case "i" cites)

The Model

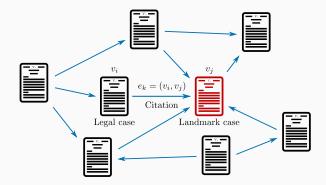


Figure: Schematic representation of the citation network. The documents and arrows represent the vertices (legal cases) and edges (citations), respectively. The citations, $e_k = (v_i, v_j)$, are assigned from vertices where arrows start, v_i , to the vertices where arrows end, v_j . Therefore, we say that v_i is citing v_j in this formalism. Furthermore, some legal cases are identified as landmark cases (red document).

Mapping landmark cases in the U.S. legal system [6/12]

Results

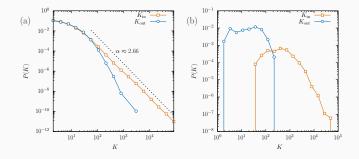


Figure: Probability distributions of $K_{\rm in}$ and $K_{\rm out}$. (a) Probability distributions of $K_{\rm in}$ and $K_{\rm out}$ for legal cases in the citation network. As we can see, the distributions show a long-tailed behavior and $P(K_{\rm in})$ show a pronounced power-law behavior with at least three orders of magnitude. The dashed line is a power-law $P(x) \propto x^{-\alpha}$ with $\alpha \approx 2.66$. (b) Probability distributions of $K_{\rm in}$ and $K_{\rm out}$ for the landmark cases.

Results

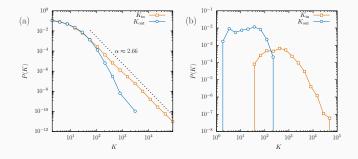


Figure: Probability distributions of $K_{\rm in}$ and $K_{\rm out}$. (a) Probability distributions of $K_{\rm in}$ and $K_{\rm out}$ for legal cases in the citation network. As we can see, the distributions show a long-tailed behavior and $P(K_{\rm in})$ show a pronounced power-law behavior with at least three orders of magnitude. The dashed line is a power-law $P(x) \propto x^{-\alpha}$ with $\alpha \approx 2.66$. (b) Probability distributions of $K_{\rm in}$ and $K_{\rm out}$ for the landmark cases. $\overline{K}_{\rm in} = \overline{K}_{\rm out} \approx 8.96$ (for usual cases) / $\overline{K}_{\rm in} \approx 1252.5$ and $\overline{K}_{\rm out} \approx 44.6$ (for landmarks).

Mapping landmark cases in the U.S. legal system [7/12]

Results

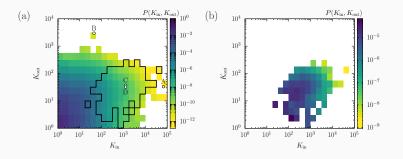


Figure: Probability distributions in the in-degree \times out-degree space. (a) Probability distribution of legal cases as function of $K_{\rm in}$ and $K_{\rm out}$. (b) Probability distribution of landmark cases as function of $K_{\rm in}$ and $K_{\rm out}$. The black line in (a) represents the boundary of the area delimited by the distribution of landmark cases shown in (b). The points "A", "B", "C" and "D" in (a) are special legal cases.

Label	$K_{\rm in}$	$K_{\rm out}$	Legal case
А	66554	33	Anderson v. Liberty Lobby, Inc. (1986)
В	45	2944	Henry v. New Jersey Department of Human
			Services (2010)
С	1253	37	Idaho v. Wright (1990)
D	1244	32	Skinner v. Oklahoma ex rel. Williamson
			(1942)

• Where $\overline{K}_{in} \approx 1252.5$ and $\overline{K}_{out} \approx 44.6$ (for landmarks).

Label	$K_{\rm in}$	$K_{\rm out}$	Legal case
А	66554	33	Anderson v. Liberty Lobby, Inc. (1986)
В	45	2944	Henry v. New Jersey Department of Human
			Services (2010)
С	1253	37	Idaho v. Wright (1990)
D	1244	32	Skinner v. Oklahoma ex rel. Williamson
			(1942)

Where K_{in} ≈ 1252.5 and K_{out} ≈ 44.6 (for landmarks).
"A" is the case with highest K_{in}.

Label	$K_{\rm in}$	$K_{\rm out}$	Legal case
А	66554	33	Anderson v. Liberty Lobby, Inc. (1986)
В	45	2944	Henry v. New Jersey Department of Human
			Services (2010)
С	1253	37	Idaho v. Wright (1990)
D	1244	32	Skinner v. Oklahoma ex rel. Williamson
			(1942)

- Where $\overline{K}_{in} \approx 1252.5$ and $\overline{K}_{out} \approx 44.6$ (for landmarks).
- "A" is the case with highest \overline{K}_{in} .
- "B" is the case with highest \overline{K}_{out} .

Label	$K_{\rm in}$	$K_{\rm out}$	Legal case
А	66554	33	Anderson v. Liberty Lobby, Inc. (1986)
В	45	2944	Henry v. New Jersey Department of Human
			Services (2010)
С	1253	37	Idaho v. Wright (1990)
D	1244	32	Skinner v. Oklahoma ex rel. Williamson
			(1942)

- Where $\overline{K}_{in} \approx 1252.5$ and $\overline{K}_{out} \approx 44.6$ (for landmarks).
- "A" is the case with highest \overline{K}_{in} .
- "B" is the case with highest \overline{K}_{out} .
- "C" is the legal case closer to the (1252.5, 44.6) point.

Label	$K_{\rm in}$	$K_{\rm out}$	Legal case
А	66554	33	Anderson v. Liberty Lobby, Inc. (1986)
В	45	2944	Henry v. New Jersey Department of Human
			Services (2010)
С	1253	37	Idaho v. Wright (1990)
D	1244	32	Skinner v. Oklahoma ex rel. Williamson
			(1942)

- Where $\overline{K}_{in} \approx 1252.5$ and $\overline{K}_{out} \approx 44.6$ (for landmarks).
- "A" is the case with highest \overline{K}_{in} .
- "B" is the case with highest \overline{K}_{out} .
- "C" is the legal case closer to the (1252.5, 44.6) point.
- "D" is the **landmark case** closer to the (1252.5, 44.6) point.

Mapping landmark cases in the U.S. legal system [9/12]

Performed a numerical data analysis in order to establish a topological map characterizing the location of landmark cases in the U.S. legal system.

- Performed a numerical data analysis in order to establish a topological map characterizing the location of landmark cases in the U.S. legal system.
- ▶ Modeled the U.S. legal system as a *citation network*.

- Performed a numerical data analysis in order to establish a topological map characterizing the location of landmark cases in the U.S. legal system.
- ▶ Modeled the U.S. legal system as a *citation network*.
- ▶ Found a power-law decay for $K_{\rm in}$ PDF with $\alpha \approx 2.66$.

- Performed a numerical data analysis in order to establish a topological map characterizing the location of landmark cases in the U.S. legal system.
- ▶ Modeled the U.S. legal system as a *citation network*.
- ▶ Found a power-law decay for $K_{\rm in}$ PDF with $\alpha \approx 2.66$.
- Compared the K_{in} and K_{out} PDFs for landmarks and usual cases.

- Performed a numerical data analysis in order to establish a topological map characterizing the location of landmark cases in the U.S. legal system.
- ▶ Modeled the U.S. legal system as a *citation network*.
- ▶ Found a power-law decay for $K_{\rm in}$ PDF with $\alpha \approx 2.66$.
- Compared the K_{in} and K_{out} PDFs for landmarks and usual cases.
- Found an area in the $K_{in} \times K_{out}$ space where landmarks are more likely to be found.

Mapping landmark cases in the U.S. legal system

[11/12]

The End!

Thank you!

Mapping landmark cases in the U.S. legal system

[12/12]